

FEDERAL TRANSIT ADMINISTRATION

Transit Bus Technology Update

Barbara A. Sisson, P.E.
Associate Administrator for
Research, Demonstration & Innovation

Clean Propulsion & Support Technology Committee Meeting
May 2, 2004

Reason for Transit Interest in Electric Drive Technologies

- Need to Meet Emissions Standards
- Reduce Operating Cost
 - ➤ Fuel efficiency fuel is 2nd largest operating cost
 - ➤ Current full size transit buses achieve only 3 4 mpg, less on some routes
 - Reduce maintenance costs
- Consumer Acceptance
 - Smoke and odor free
 - Clean and quiet

Why Transit Buses?

- Fleet Operations
 - Centrally fueled and maintained
 - Professional operators, mechanics, and fuelers
 - Urban stop-and-go duty cycle; fixed route & schedule
- Size and Weight of Vehicle
- Federal Support for Capital Purchases
 - Federal funding support
 - Programs to assist introduction of new technologies
- High Visibility/High Impact
 - Operate in densely populated areas
 - Broader public exposure and acceptance

Current Effort Characteristics

- Limited Discretionary Funding
 - Congressionally directed earmarks
 - Both in research and capital programs
- Void in Technology Development
- Significant Funding from Bus Capital Earmarks
 - > \$13.4 Million in FY 03
 - > \$16.2 Million in FY 04
- Limited Data Collection, Evaluation and Information Sharing

FTA Direction

- Develop Business Case with Transit Industry for Appropriate FTA Role
- Manage Earmarks, Channel into Cohesive Program
- Facilitate Data Collection, Evaluation and Information Sharing
- Leverage Resources to the Benefit of Transit

Business Case for FTA Role

- Data Collection and Evaluation
 - Greater coordination nationally and internationally
 - Continued coordination with DOE/NREL
- Accelerate the Commercialization of Hybrid Electric Buses
 - Ways to increase market volume
 - Exploring funding incentives
- Hybrid Electric Bus Certification
 - Engine vs vehicle based
 - Working group approach

Hydrogen & Fuel Cell Bus Program

- Heavy-Duty Fuel Cell Bus
 - Santa Clara VTA Ballard, Gillig
 - AC Transit, SunLine Transit UTC, Van Hool
 - CUTE Program
- Automotive-Based Fuel Cell Hybrid Bus
 - Hickam Air Force Base Hydrogenics, Enova
 - Alabama Birmingham Ballard, DaimlerChrysler
 - New Haven TBD
 - Ann Arbor TBD
- Hydrogen ICE Hybrid Bus
 - SunLine Transit ISE Research
 - UniTrans UC Davis

Data Collection, Evaluation, Information Sharing

- Fuel Cell Bus Working Group
- International Fuel Cell Bus Workshop
- European Fuel Cell Bus Scanning Tour
- Electric Drive Bus Program Review
- Outreach to FTA Regional Offices

Leveraging Resources

- Air Force
 - Hickam Air Force fuel cell hybrid bus
 - Heavy-duty hybrid system with Mack
- Army's National Automotive Center
 - Synthetic diesel
 - Fuel cell, hybrid electric technology
- Department of Energy
 - Hydrogen, fuel cell, infrastructure
 - International Partnership for the Hydrogen Economy
 - Data collection and evaluation

What is Bus Rapid Transit (BRT)?

- BRT is fast, reliable, convenient, affordable, accessible, and aesthetically distinguishable from "standard" bus service
- BRT may incorporate the following features:
 - Express service
 - Advanced Public Transportation Systems (APTS)
 - Off-board fare collection
 - Dedicated or exclusive rights-of-way
 - Improved vehicles

BRT is a Flexible & Integrated Package of Rubber-Tired Transit Solutions

Conventional Bus

BUS RAPID TRANSIT

Conventional Fixed Guideway Transit

BRT Components:

- Running Ways
- Stations
- Vehicles
- Services
- Route Structure
- Fare Collection
- Intelligent Transportation Systems (ITS)

Benefits of BRT?

For Transit Users

- Improve services (frequency, reliability, access)
- Lower travel times (operating speed, wait times)
 - Time savings range from 29-32% on city streets to 47% on busways and reserved lanes

For Transit Operators

- Increase ridership
 - U.S. BRT systems report 20-80% ridership increases
- Better utilization of resources
 - More economical to build than rail (BRT costs average \$.5-15M/mile)
 - Higher operating efficiency than conventional bus
- Allow incremental development and customization

For the General Public

- Reduce congestion, emissions, and energy use
- Promote and reinforce positive land uses

Goals of FTA's BRT Initiative

- Demonstrate BRT as an Effective, Low Cost Transit Solution in Selected Corridors
- Provide Better Bus Service for Existing Riders
- Attract New Riders to Improved Bus Service
- Improve Transit Operational Efficiencies
- Leverage BRT to Introduce Technological Improvements into Revenue Service
- Change Perception that Bus Service is Slow, Inconvenient, & Uncomfortable
- Develop the Characteristics of Bus Rapid Transit
 (CBRT) Document to Guide Decision-Makers Interested in BRT as a Local Transit Option

Characteristics of BRT Document Will:

- Present BRT Information in an Easy to Use Format
- Provide Cost/Benefit Information to Help Support Business Case for BRT
- Develop a Consistent Framework for Assessing System Performance of BRT components
- Empower Planners with Tools to Make Investment Decisions that Best Respond to Local Needs
- Fully Incorporate BRT into the Larger Context of Transit System Planning

Contact Information

Walter Kulyk

Director, Office of Mobility Innovation

400 7th Street, SW

Mail Code: TRI-10

Washington, DC 20590

(202) 366-4991

walter.kulyk@fta.dot.gov